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Abstract

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation
systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system
has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS)
successfully solved the problems of price, size and weight with the traditional INS. Therefore they are
commonly applied in GPS/INS integrated systems. The biggest problem of MEMS is the large sensor
errors, which rapidly degrade the navigation performance in an exponential speed. Three levels of
GPS/IMU integration structures, i.e. loose, tight and ultra tight GPS/IMU navigation, are proposed by
researchers. The loose integration principles are given with detailed equations as well as the basic INS
navigation principles. The Extended Kalman Filter (EKF) is introduced as the basic data fusion algorithm,
which is also the core of the whole navigation system to be presented. The kinematic constraints of land
vehicle navigation, i.e. velocity constraint and height constraint, are presented. A detailed implementation
process of the GPS/IMU integration system is given. Based on the system model, we show the propagation
of position standard errors with the tight integration structure under different scenarios. A real test with
loose integration structure is carried out, and the EKF performances as well as the physical constraints are
analyzed in detail.

Keywords: GPS/INS Integration, Vehicle Navigation, INS Error Analysis, Kalman Filtering.

_Introduction Although INS systems have good short term

accuracy, there are two main problems in using such a

Inertial Navigation Systems (INS) utilize inertial
sensors to  provide navigation information
continuously with time [1]. In a Strapdown 3D INS
with full Inertial Measurements Unit (IMU) [2], three
acceleration sensors (Accelerometers) and three
angular rate sensors (Gyroscopes) are utilized. The
accelerometers measure the acceleration of the
moving body in three orthogonal directions.
Gyroscope measures the rotation rate around these
three basic orthogonal axes. The essential functions in
INS are defined as follows: 1) Determination of the
angular motion of a vehicle using gyroscopic sensors,
from which its attitude relative to a reference frame
may be derived. 2) Measure the acceleration using
accelerometers. 3) Resolve the acceleration
measurements into the reference frame using the
knowledge of attitude. 4) Account for the gravity
component. 5) Integrate the resolved accelerations to
estimate the wvelocity and position of the vehicle.

scheme. The first problem is the sensor imperfections
and drifts [3]. The second problem is that the
measurements of such  sensors must be
mathematically integrated to provide velocity,
position, and attitude information. Integration causes
errors to accumulate [4] resulting in huge drifts over
time that growth without bounds. On the other side,
GPS systems provide consistent long term accuracy
giving position and velocity updates using GPS
satellites signals processing [5]. A major problem of
GPS is signal blockage and multi-path in urban
canyons, under buildings, and tunnels. In these
environments, signal may be difficult to acquire or
number of satellites available may be not sufficient to
provide position information [6]. Based on the
complementary error characteristics of INS and GPS,
an integrated solution using both systems is often
used. Although there are many approaches to fuse
data from both systems, KF is most widely used [7].
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KF utilizes an error dynamic model of the INS system
errors to implement two main steps: Prediction step
and Update step. Prediction step is done as long as no
GPS update is available. In this step, the system uses
the error dynamic model to estimate the INS errors. In
the update step, GPS velocity and position
measurements are used to get optimal estimate of INS
errors. Thus, by subtracting INS errors from the INS
output, accurate navigation information is obtained.
This integration scheme is called loosely coupled
which is utilized here in this work. This scheme is
shown in Fig. 1.

2. MEMS-based INS

The strapdown inertial navigation system (INS)
involves mechanization equations, which are the
numerical tool to implement the physical
phenomenon that relates the inertial sensor
measurements to the navigation state (i.e., position,
velocity and attitude) [8, 9]. The shaded rectangle in
Figure 2 represents the INS mechanization equations
that can describe the motion of a vehicle, taking as
input the inertial measures in the body frame
(accelerations and angular rotations) and converting
these measurements into a reference frame for
navigation. In this case, it provides position, velocity
and attitude of the vehicle with respect to the North-
East-Down (NED) local geodetic frame.

The inertial measurement unit (IMU), which is
part of the INS, is the device where the inertial
sensors are mounted; it provides the accelerations and
angular rotations along three orthogonal directions
with respect to the body frame (Figure 2). In a low-
cost INS (MEMS grade), the measurement of these
accelerometer and gyro sensors is affected by
different errors, which can be classified as
deterministic and stochastic errors. Figure 3 depicts
some of these errors through a simple relationship
between IMU physical signal and the sensor output.
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Deterministic errors are due to manufacturing and
mounting defects and can be calibrated out from the
data; on the other hand, the stochastic errors are the
random errors that occur due to random variations of
bias or scale factor over time [10]. There are several
errors that affect the inertial sensors: the
misalignment errors are the result of non-
orthogonalities of the sensor axes and are usually
treated as deterministic error. The scale factor
represents the sensibility of the sensor, and it is the
result of manufacturing tolerances or aging; it is
usually divided between a linear and a non-linear part,
where the linear part is obtained from calibration,
while the non-linear is modeled with a stochastic
process [11]. In the case of the bias, it is divided
between bias turn-on and bias-drift: the bias turn-on is
constant, but it varies from turn-on to turn-on and is
considered as a deterministic error; the bias-drift
presents a random behavior and needs to be modeled
with a stochastic process [12, 13]. Regarding the
random error (Figure 2), this is an additional signal
resulting from noise of the sensor itself or other
components that interfere with the signal provided by
the sensor; it is also considered as part of the
stochastic error of the sensor. The deterministic errors
can be minimized before implementing the
mechanization equations by following different
procedures through laboratory calibrations. In this
work, we focused on the stochastic error, specifically,
in the bias-drift, since the stochastic modeling of this
error is a challenging task, not only because of the
random nature, but also because it seriously affects
the performance of a navigation system. Therefore, a
suitable estimation of the stochastic model parameters
of this error will improve the performance of the INS;
as a consequence, the input error to the mechanization
stage (Figure 1) can be compensated and, in turn, the
position error minimized.
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Figl. INS/GPS Integration in Loosely Coupled scheme
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Fig2.Navigation frame inertial navigation system (INS) mechanization; figure kindly taken from [14].
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Fig3. Inertial sensor error modeling; figure kindly taken from [15].
3. Perturbation of the Navigation Equation 81" = F,.61" + F,.,60" (6)
The error analysis in this paper utilizes perturbation Where
methods to linearize the nonlinear system differential For B
equations. For example, the perturbation of the —w, sing 0 iz
position, velocity and attitude DCM can be expressed G ;r h)
. N
as: = 0 O Grime
AN _ 2N n _ _ Vg Vg tan @
1: =r"+6r (D) W, COS @ ) cosZ g 0 T h)? )
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_ 0 NTh 0
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Where, e.g. V™ is computed velocity, V™ is true Fe, = |M +h 0 0|
velocity and V™ is computed velocity error. Also E™ | —tan¢g |
is the skew symmetric form of the attitude errors: | 0 N+h | (8)

0 _ED EE
En = ED 0 _ENl
—€g €y 0 4)

Using above equations, the state vector can be
defined as (5):
X=[sr" sV €] ®)

Where §r™ is the position error vector, §V™ is the
velocity error vector and E™ is the attitude error
vector.

3.1. Position Error Equation

The position error dynamics equation can be obtained
using the partial derivatives, because the position
equations are a function of position and velocity.

Where, M and N, the radii curvature in the meridian
and prime vertical are considered as constants.

3.2. Velocity Error Equation
The computed version of velocity can be obtained as

©).
B = T P - Q@ + @) x "+ g" ©)

The velocity error dynamics can be written as (10).

SV = F,.87™ + F,,,6v™ + (f* X)€" + C} 5fP (10)
Where:
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3.3 Attitude Error Equation

The attitude error dynamics can be written as (13).

&" = F .01 + F,6v" — (0}, X)e® — CF Swh,  (13)
where

Fer —p
—w, Sin @ 0o —=
(N + h)?
Un
= 0 O Grn|
l—(u oS & — Vg 0 vptang |
[T@ecOS® (N+1h)coszgo (N+h)2J (14)
[ 0 —— ol
I N+h I
-1
F. =
“ IM+h 0 0
—tan @
N+h (15)

3.4. Continuous INS Error Dynamics

The final, continuous error model can be constructed
as (16).

X =Fx+ Gu (16)
Where F is the dynamic matrix, x is the state vector,
G is the design matrix and u is the forcing vector
function.

Fr Fpy 0
F=|F, Fy (fnx)\
Fer Fe _(w?n X) (17)
or"
i
3 (18)
0 0
0 —cp (19)
[ 6fm ]
47 o, (20)

The specific force,f™, is the sensed output of the
accelerometer transformed into the navigation frame.
The specific force is a combination of internal and
gravitational accelerations:

fr=C'l—g (21)
Where g is the gravitational acceleration. The
specific force vector is defined as

fn
" =|fe
fo
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(22)

The total angular velocity of the local-level
navigation frame with respect to the inertial frame be
expressed as

Wi = Wi, + wey (23)
or
+ ok
[ W, COS @ D) ]
Un
Win :i “M+h i
Vg tan ¢
l W, COS @ (N+h)J (24)

4. Loosely-Coupled KF Integration

It is common to blend GPS and INS using different
integration approaches (i.e., loosely-coupled, tightly-
coupled or ultra-tightly coupled; see [13]). In this
paper, we confine our attention in the loosely-coupled
(LC) approach, because this strategy can be used to
evaluate the behavior of the inertial sensor stochastic
model without any additional support during partial or
complete GPS outages, which is not the case of the
tightly-coupled integration, where one satellite signal
available might be used to compute the Extended
Kalman Filter (KF; i.e., tightly-coupled uses GPS
estimates of pseudoranges and Doppler determined by
using satellite ephemeris data). There are two ways to
implement the LC strategy: feed-forward and feed-
back. The first one is used in systems that have a
high-performance inertial measurement unit (IMU),
as it merges the GPS/INS information, but it has no
control over the error that may occur in the IMU; it
basically works with an open-loop architecture. On
the other hand, the feed-back includes a close loop
that allows us to correct the INS error, where in the
case of a GPS outage, the navigation solution will
depend only on the INS, which will be corrected by
its correspondent inertial sensor error model. The
block diagram of the GPS/INS integration with
feedback is shown in Figure 4.

In this strategy, the position and velocity obtained
from the mechanization (1]} and v]ys) are combined
with the GPS, which delivers velocity and position
data (rfps and vjys). The residual error (6R™ and
6V™) calculated from the GPS and INS outputs is the
input to the Kalman Filter (KF), where a state-space
model is built with error states for navigation and
IMU errors. The error states related to the IMU errors
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are fed back though the closed loop in order to
correct the INS navigation solution. The system
model for loosely-coupled approach is given by
position error, velocity error and attitude error, which
represent the navigation error states, i.e., a total of

nine states for 3D navigation. Moreover, the scale
factors and bias for gyro and accelerometers are
included in the IMU error states, and the number of
states will depend on the stochastic model employed.

closed loop with INS correction
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Fig4. Loosely-coupled Kalman Filter (KF) integration with feedback; figure kindly taken from []

Fig6.Path of the vehicle
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5. Implementation and Experimental Results
To implement the proposed algorithm, a MPU 9250
and U-blox Neo6m have been used as an inertial
measurement unit and GPS receiver, respectively.
These sensors are mounted on the vehicle for
navigation purposes. Figure (5) and Figure (6) show
the experimental setup and path for the wvehicle
navigation, respectively.

The proposed data fusion algorithm has been used
to estimate the position, velocity and attitude of the
vehicle. Figure (7) and Figure (8) shows the
longitudinal and latitude of the vehicle in the path,
respectively.

The accelerations of the vehicle in XYZ inertial
frame have been shown in Figure (9) to Figure (11).

Angular velocities of the vehicle in XYZ inertial
frame have been shown in Figure (12) to Figure (14).

Figure (15) to Figure (17) show the attitudes of
the vehicle in XYZ inertial frame.

The longitudinal velocity of the vehicle has been
shown in Figure (18).

6. Conclusions

This paper has shown an effective combination of two
separated systems (GPS and INS) which have their
own advantages and drawbacks. The low-cost IMU is
a self-obtained sensor which is not capable of
determining reasonable position information. GPS, in
contrast, gives good results, but is only able to
calculate every single second. This paper has shown
the basic integration method of GPS and INS and
estimation techniques. Loosely coupled has been used
for data fusion of INS and GPS. The proposed
algorithm, has been tested in experimental test and the
results show that this coupling method can reduce the
drift in measure kinematical variables.
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